Copied to
clipboard

G = C33:6C42order 432 = 24·33

3rd semidirect product of C33 and C42 acting via C42/C22=C22

metabelian, supersoluble, monomial, A-group

Aliases: C33:6C42, C62.83D6, C3:2Dic32, C3:Dic3:4Dic3, C6.19(S3xDic3), C32:7(C4xDic3), C6.20(C6.D6), (C3xC62).13C22, C22.2(C32:4D6), (C2xC6).59S32, (C3xC6).55(C4xS3), (C3xC3:Dic3):7C4, (C2xC3:Dic3).8S3, C2.2(C33:9(C2xC4)), (C6xC3:Dic3).13C2, (C32xC6).46(C2xC4), (C3xC6).42(C2xDic3), SmallGroup(432,460)

Series: Derived Chief Lower central Upper central

C1C33 — C33:6C42
C1C3C32C33C32xC6C3xC62C6xC3:Dic3 — C33:6C42
C33 — C33:6C42
C1C22

Generators and relations for C33:6C42
 G = < a,b,c,d,e | a3=b3=c3=d4=e4=1, ab=ba, ac=ca, dad-1=eae-1=a-1, bc=cb, bd=db, ebe-1=b-1, dcd-1=c-1, ce=ec, de=ed >

Subgroups: 600 in 178 conjugacy classes, 59 normal (5 characteristic)
C1, C2, C3, C3, C4, C22, C6, C6, C2xC4, C32, C32, Dic3, C12, C2xC6, C2xC6, C42, C3xC6, C3xC6, C2xDic3, C2xC12, C33, C3xDic3, C3:Dic3, C62, C62, C4xDic3, C32xC6, C6xDic3, C2xC3:Dic3, C3xC3:Dic3, C3xC62, Dic32, C6xC3:Dic3, C33:6C42
Quotients: C1, C2, C4, C22, S3, C2xC4, Dic3, D6, C42, C4xS3, C2xDic3, S32, C4xDic3, S3xDic3, C6.D6, C32:4D6, Dic32, C33:9(C2xC4), C33:6C42

Smallest permutation representation of C33:6C42
On 48 points
Generators in S48
(1 39 5)(2 6 40)(3 37 7)(4 8 38)(9 36 22)(10 23 33)(11 34 24)(12 21 35)(13 27 45)(14 46 28)(15 25 47)(16 48 26)(17 43 29)(18 30 44)(19 41 31)(20 32 42)
(1 39 5)(2 40 6)(3 37 7)(4 38 8)(9 22 36)(10 23 33)(11 24 34)(12 21 35)(13 27 45)(14 28 46)(15 25 47)(16 26 48)(17 43 29)(18 44 30)(19 41 31)(20 42 32)
(1 5 39)(2 40 6)(3 7 37)(4 38 8)(9 36 22)(10 23 33)(11 34 24)(12 21 35)(13 27 45)(14 46 28)(15 25 47)(16 48 26)(17 29 43)(18 44 30)(19 31 41)(20 42 32)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 13 29 23)(2 14 30 24)(3 15 31 21)(4 16 32 22)(5 27 43 33)(6 28 44 34)(7 25 41 35)(8 26 42 36)(9 38 48 20)(10 39 45 17)(11 40 46 18)(12 37 47 19)

G:=sub<Sym(48)| (1,39,5)(2,6,40)(3,37,7)(4,8,38)(9,36,22)(10,23,33)(11,34,24)(12,21,35)(13,27,45)(14,46,28)(15,25,47)(16,48,26)(17,43,29)(18,30,44)(19,41,31)(20,32,42), (1,39,5)(2,40,6)(3,37,7)(4,38,8)(9,22,36)(10,23,33)(11,24,34)(12,21,35)(13,27,45)(14,28,46)(15,25,47)(16,26,48)(17,43,29)(18,44,30)(19,41,31)(20,42,32), (1,5,39)(2,40,6)(3,7,37)(4,38,8)(9,36,22)(10,23,33)(11,34,24)(12,21,35)(13,27,45)(14,46,28)(15,25,47)(16,48,26)(17,29,43)(18,44,30)(19,31,41)(20,42,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,13,29,23)(2,14,30,24)(3,15,31,21)(4,16,32,22)(5,27,43,33)(6,28,44,34)(7,25,41,35)(8,26,42,36)(9,38,48,20)(10,39,45,17)(11,40,46,18)(12,37,47,19)>;

G:=Group( (1,39,5)(2,6,40)(3,37,7)(4,8,38)(9,36,22)(10,23,33)(11,34,24)(12,21,35)(13,27,45)(14,46,28)(15,25,47)(16,48,26)(17,43,29)(18,30,44)(19,41,31)(20,32,42), (1,39,5)(2,40,6)(3,37,7)(4,38,8)(9,22,36)(10,23,33)(11,24,34)(12,21,35)(13,27,45)(14,28,46)(15,25,47)(16,26,48)(17,43,29)(18,44,30)(19,41,31)(20,42,32), (1,5,39)(2,40,6)(3,7,37)(4,38,8)(9,36,22)(10,23,33)(11,34,24)(12,21,35)(13,27,45)(14,46,28)(15,25,47)(16,48,26)(17,29,43)(18,44,30)(19,31,41)(20,42,32), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,13,29,23)(2,14,30,24)(3,15,31,21)(4,16,32,22)(5,27,43,33)(6,28,44,34)(7,25,41,35)(8,26,42,36)(9,38,48,20)(10,39,45,17)(11,40,46,18)(12,37,47,19) );

G=PermutationGroup([[(1,39,5),(2,6,40),(3,37,7),(4,8,38),(9,36,22),(10,23,33),(11,34,24),(12,21,35),(13,27,45),(14,46,28),(15,25,47),(16,48,26),(17,43,29),(18,30,44),(19,41,31),(20,32,42)], [(1,39,5),(2,40,6),(3,37,7),(4,38,8),(9,22,36),(10,23,33),(11,24,34),(12,21,35),(13,27,45),(14,28,46),(15,25,47),(16,26,48),(17,43,29),(18,44,30),(19,41,31),(20,42,32)], [(1,5,39),(2,40,6),(3,7,37),(4,38,8),(9,36,22),(10,23,33),(11,34,24),(12,21,35),(13,27,45),(14,46,28),(15,25,47),(16,48,26),(17,29,43),(18,44,30),(19,31,41),(20,42,32)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,13,29,23),(2,14,30,24),(3,15,31,21),(4,16,32,22),(5,27,43,33),(6,28,44,34),(7,25,41,35),(8,26,42,36),(9,38,48,20),(10,39,45,17),(11,40,46,18),(12,37,47,19)]])

60 conjugacy classes

class 1 2A2B2C3A3B3C3D···3H4A···4L6A···6I6J···6X12A···12L
order12223333···34···46···66···612···12
size11112224···49···92···24···418···18

60 irreducible representations

dim111222244444
type+++-++-+
imageC1C2C4S3Dic3D6C4xS3S32S3xDic3C6.D6C32:4D6C33:9(C2xC4)
kernelC33:6C42C6xC3:Dic3C3xC3:Dic3C2xC3:Dic3C3:Dic3C62C3xC6C2xC6C6C6C22C2
# reps13123631236326

Matrix representation of C33:6C42 in GL6(F13)

100000
010000
001000
000100
00001212
000010
,
12120000
100000
001000
000100
000010
000001
,
100000
010000
0001200
0011200
000010
000001
,
800000
080000
000800
008000
000080
000055
,
1200000
110000
0012000
0001200
000050
000088

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,12,0],[12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,12,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[8,0,0,0,0,0,0,8,0,0,0,0,0,0,0,8,0,0,0,0,8,0,0,0,0,0,0,0,8,5,0,0,0,0,0,5],[12,1,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,5,8,0,0,0,0,0,8] >;

C33:6C42 in GAP, Magma, Sage, TeX

C_3^3\rtimes_6C_4^2
% in TeX

G:=Group("C3^3:6C4^2");
// GroupNames label

G:=SmallGroup(432,460);
// by ID

G=gap.SmallGroup(432,460);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-3,-3,56,36,1124,571,2028,14118]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^3=c^3=d^4=e^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=e*a*e^-1=a^-1,b*c=c*b,b*d=d*b,e*b*e^-1=b^-1,d*c*d^-1=c^-1,c*e=e*c,d*e=e*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<